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Abstract. We consider a quite general concept of the inverse mathematical programming problem. A
brief description of the connection between primal and inverse problems is given. We show that for
some primal convex problems the inverse problem is a d.c. programming problem and we present a
cutting plane method for solution of the latter one.
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1. Introduction

Many mathematical programming problems can naturally be associated with the
so-called inverse problems. A pair of problems is called self-inverse problems if
solution or a part of solution to one problem is presented in the description of
another. Such a definition is of an arbitrary nature as to which problem should be
considered as the primal one and which as the inverse. A more thoroughly studied
problem is often referred to as primal.

Consider the following example. Let m� n matrix A and vectors c 2 En; b 2

Em be given. Find

x� 2 ArgminfcTx : x 2 Rg; (1)

R = fx : Ax 6 b; x > 0g; (2)

here we assume that R is a compact set.
Associate the following problem with Problems (1) and (2). Let x� be given.

Find vectors c� 2 Rc; b
� 2 Rb such that

x� = arg min
x
fc�

T

x : Ax 6 b�; x > 0g; (3)

where Rc; Rb are convex compact sets.
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It is natural to call the linear programming Problems (1) and (2) the primal
problem and Problem (3) the inverse one. It is obvious to associate a family of
inverse problems of kind (3) with Problem (1) and (2). It depends on what we
consider as the varying parameter: elements of the matrix A, vector c or vector b.

2. Inverse mathematical programming problems

We use a more general definition of the inverse mathematical programming problem
(see Antipin [1]). Let the following parametric family of mathematical program-
ming problems be given:

min
x
f'(x; u) : g(x; u) 6 0; x 2 Rxg; (4)

where '(x; u) is a continuous function, g(x; u) is a continuous vector function
(g 2 Em1 ), Rx is a compact set, u 2 Em is a vectorial parameter, and Rx � En.

From Problem (4) it is necessary to find a pairx�; u� which satisfies the condition

(x�; u�) 2 Rx;u = f(x; u) : f(x; u) 6 0; w(x; u) = 0; u 2 Rug; (5)

where f 2 Em2 ; w 2 Em3 are continuous vector functions, and Ru � Em is a
compact set. In other words, find a pair x�; u�, such that

x� 2 Argminf'(x; u�); g(x; u�) 6 0; x 2 Rxg; (6)

f(x�; u�) 6 0; w(x�; u�) = 0; u� 2 Ru: (7)

We associate this with the primal problem of the following type: find

(x; u) 2 Argminf'(x; u); g(x; u) 6 0; x 2 Rx; (x; u) 2 Rx;ug: (8)

with inverse Problems (6) and (7). It is not difficult to see that a pair (x�; u�) is
feasible for Problem (8), hence,

'(x; u) 6 '(x�; u�):

This inequality shows a connection between the primal and inverse problems.
If in (7) we have f(x; u) � 0; w(x; u) = x � x� = 0; (m3 = n); Ru � En

and input vector x�, then from (6), (7) we obtain a standard form of the inverse
mathematical programming problem: find vector u� such that

x� 2 Argminf'(x; u�) : g(x; u�) 6 0; x 2 Rxg: (9)

From now on we assume that '(x; u) and vector functions g(x; u); f(x; u) are
convex in (x; u), w(x; u) is an affine function and Rx; Ru are convex closed sets.
Then primal Problem (8) is a convex programming problem. Let us investigate the
complexity of inverse Problems (6) and (7). To do this we use another form of
Problems (6) and (7). For any u 2 Ru denote

R(u) = fx : g(x; u) 6 0; x 2 Rxg; (10)
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'0(u) = min
x
f'(x; u) : x 2 R(u)g; (11)

M(u) = Argminf'(x; u) : x 2 R(u)g: (12)

Assume that R(u) 6= ;;M(u) 6= ;. Due to the assumptions, '0(u) is a convex
function. Then we can interpret the initial inverse problem in the following way:
find vector u� 2 Ru, such that in the optimal setM(u�) of Problem (12) the vector
x� 2 Rx;u� = fx : f(x; u�) 6 0; w(x; u�) = 0g exists.

In [2] the constraint x 2 M(u) is called the extremal type constraint. Some
simple problems with the extremal type constraints were studied in [3]. These
constraints can be given as the standard equalities and inequalities:

'(x; u) 6 '0(u); g(x; u) 6 0; x 2 Rx:

Then inverse Problems (6) and (7) can be rewritten in the following way: find a
pair x�; u� which satisfies the system

 (x; u) = '(x; u) � '0(u) 6 0; (13)

g(x; u) 6 0; f(x; u) 6 0; w(x; u) = 0; x 2 Rx; u 2 Ru: (14)

Due to the convexity of setsRx; Ru, and the functions g(x; u); f(x; u) and linearity
ofw(x; u), the Constraints (14) determine a convex set inEn+m. However, the left-
hand part of Inequality (13) is given by the difference of two convex functions. This
complicates the solution of the inverse problem. Moreover, function'0(u) is given
implicitly and the set determined by Inequality (13) does not satisfy the regularity
conditions since for any fixed u 2 Ru the set f'(x; u)�'0(u) < 0; x 2 R(u)g is
empty. This fact makes the solution of inverse mathematical problems even more
complicated. At the same time primal Problem (8), under the assumptions made
above, is a convex programming problem. All this confirms the statement that even
if the primal problem is ‘good’, the inverse problem is almost always ‘bad’.

Consider now a particular case of Problems (13) and (14). Assume that the
functions g(x; u); f(x; u) are linear, and the sets Rx; Ru are determined by a
system of linear inequalities, i.e. Conditions (14) are given in the following form:
Ax + Bu 6 b, where A and B are matrices of the corresponding size and b is a
given vector. Then we associate the following implicit d.c. programming problem
with Problems (13) and (14):

minf (x; u) = '(x; u) � '0(u) : (x; u) 2 Rg; (15)

where R = f(x; u) : Ax + Bu 6 bg;  (x; u) is a continuously differentiable
function. To solve Problem (15) we use the cutting plane method inEn+1 (see [4]).

Denote y = (x; u; �); � 2 E1. Assume that the epigraph of the function (x; u)
over the feasible set R is embedded into the bounded form below polyhedron
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Rk = f(x; u; �) : Dky 6 dk; Ax + Bu 6 bg. Let (xk; uk; �k) = yk 2 Em+n+1

be a solution of the linear programming problem:

minf� : (x; u; �) 2 Rk
g: (16)

Ak is a (m + n + 1) � (m + n + 1) matrix of constraints active at the point
(xk; uk; �k), i.e. Akyk = bk, Skj are columns of the inverse matrix (Ak)�1.
Write the equations of the rays originating from yk to the adjacent vertices of the
polyhedronRk

y = yk � �jSkj; j = 1;m+ n+ 1; �j > 0: (17)

Solve the convex programming problem

minf'(x; uk) : x 2 R(uk)g = '(xk; uk) = '0(u
k): (18)

Then find the points fyk;1; . . . ; yk;n+m+1g of the intersections of rays (17) with the
graph of the function

 k(x; u) = '(xk; uk) +r'x(x
k; uk)T (x� xk)

+r'u(x
k; uk)T (u� uk)� '0(xu);

i.e. with the surface  k(x; u) = �.
Draw a cutting plane pk

T

y = �k through these points, we determine the poly-
hedron

Rk+1 = f(x; u; �) : (x; u; �) 2 Rk; pk
T

y 6 �kg;

which does not contain (xk; uk; �k). The next approximation (xk+1; uk+1; �k+1)

is obtained from the linear programming problem

minf� : (x; u; �) 2 Rk+1
g:

LEMMA 1. (i)  k(x; u) is a concave function; (ii)  k(xk; uk) = '(xk; uk) �

'0(u
k) = 0; (iii)  k(x; u) 6 '(x; u) � '0(u);8x 6= xk; u 6= uk:

Proof. The first and second assertions are obvious. Let us prove the third
assertion. From the definition of'0(u) for any fixed xk we have'0(u) 6 '(x

k; u);

i.e. '(x; u) � '0(u) > '(x; u) � '(xk; u): Then due to the convexity of '(x; u)

'(x; u) � '0(u) > '(x; u) � '(xk; u) > '(xk; uk)

+r'x(x
k; uk)T (x� xk) +r'u(x

k; uk)T (u� uk)� '(xk; u) =  k(x; u):

Hence, k(x; u) is a concave minorant of the minimized function, so it can be used
for constructing correct cuts in Em+n+1. The proof of the algorithm convergence
is given in [5]. E
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3. The Huard’s centres method in inverse mathematical programming
problems

The method described in the previous section can be extended to the nonlinear con-
straints case in (14). Here we use the Huard’s centres method in which constraints
are moved into the minimand

 k(x) = maxf'0(x)� '0(x
k); '1(x); :::; 'm(x)g: (19)

Then the mathematical programming problem

minf'0 : 'i(x) 6 0; i = 1;m; x 2 Rg; (20)

where R is a convex polytope, can be solved by the following iterative procedure

xk+1 = argminf k(x) : x 2 Rg: (21)

Let us show the connection between the Huard’s method [6] and the embeddings
methods described in [3].

Let '�0 = minf'0(x) : x 2 R0g, where R0 = fx : x 2 R;'i(x) 6 0; i =
1;mg; then the solving of Problem (20) is equivalent to the solving of the following
mathematical programming problem

minf (x) : x 2 Rg; (22)

where

 (x) = maxf'0(x)� '�0; '1(x); :::; 'm(x)g: (23)

Define the epigraph Rn+1 of the function  (x)

Rn+1 = f(x; xn+1) : x 2 R; xn+1 2 E
1;  (x) 6 xn+1g:

Then Problems (22) and (23) is equivalent to the following one

minfxn+1 : (x; xn+1) 2 Rn+1g: (24)

In [3] the following definition of the embeddings, methods for solving Problem
(24) are given.

Let the set Rk
n+1 � Rn+1 be given and let the point (xk; xkn+1) be an optimal

solution of the problem

minfxn+1 : (x; xn+1) 2 R
k
n+1g: (25)

Construct a set Rk+1
n+1 � Rn+1 such that (xk; xkn+1) 62 R

k+1
n+1.

Find the next approximation (xk+1; xk+1
n+1) as a solution to the problem

minfxn+1 : (x; xn+1) 2 R
k+1
n+1g: (26)

If there exists K1 � K = f1; 2; :::g, such that

lim
k!1

xkn+1 = '�0; k 2 K1; (27)

then Methods (26) and (27) are called methods of the objective epigraph embedding,
or simply embedding methods.
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THEOREM 1. Let sets fRk
n+1g be determined in the following way:

Rk
n+1 = f(x; xn+1) : x 2 R;�k(x) 6 xn+1; k 2 Kg;

where f�k(x)g is a family of equicontinuous functions, such that

�i(x
i) 6 �k(x

k);8k; i 2 K(k > i); (28)

�k(x
i) > '�0;8k; i 2 K(k > i); (29)

wherexi = argminfxn+1 : (x; xn+1) 2 R
i
n+1g; i 2 K: Then there existsK1 � K ,

such that

lim
k!1

xkn+1 = '�0; k 2 K1: (30)

Proof. Choose from fxkg a convergent subsequence with numbers k 2 K1 �

K: Due to (28) '�0 > �k(x
k) > �i(x

i);8k; i 2 K1(k > i): Therefore, there exists

lim
k!1

�k(x
k) = lim

k!1
xkn+1 = '1

6 '�0; k 2 K1

or

�k(x
k) 6 '1

6 '�0; 8k 2 K1: (31)

Assume that '1 < '�0, i.e.

'�0 � '1 > " > 0: (32)

Substituting the left-hand parts of (29) and (31) in (32) we obtain a stronger
inequality

�k(x
i)� �k(x

k) > "; 8k > i; k; i 2 K1:

Then, due to the equicontinuity of f�k(x)g, there exists � > 0, such that

kxi � xkk > �; 8k > i:

The latter contradicts the convergence of xk, therefore

lim
k!1

xkn+1 = '�0; k 2 K1: E

Many iterative processes fit in the scheme of embeddings methods and sufficiently
satisfy the convergence conditions mentioned in the theorem, for example, the
Pijavskii method [7], cutting planes methods [8], and many others. Here we show
that the Huard’s centres method fits the described scheme.

THEOREM 2. The iterative process (19),(21) for solving problem (20) is the
embedding method for the solution of the equivalent problem (22)-(23).
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Proof. Consider Problems (22) and (23) in the form (24). Determine the set

Rk
n+1 = f(x; xn+1) : x 2 R; k(x) 6 xn+1g: (33)

Then the iterative process (19), (21) can be rewritten in the form

xk+1 = argminfxn+1 : (x; xn+1) 2 R
k
n+1g: (34)

It is obvious that Rk
n+1 � Rn+1, moreover, due to the construction,

(xk; xkn+1) 62 R
k+1
n+1:

Now we have to prove that there exists an index set K1 � K , such that

lim
k!1

 k(x
k) = lim

k!1
xkn+1 = 0; k 2 K1: (35)

The sequence f i(xi)g is monotonously nondecreasing and nonpositive, i.e.

 i(x
i) 6  k(x

k) 6 0; 8k; i 2 K; i < k: (36)

On the other hand, from (21) we have

 k(x
i) > 0; 8i; k 2 K; i < k: (37)

Hence, there exists

lim
k!1

 k(x
k) = lim

k!1
xkn+1 = P 6 0; (38)

i.e.  k(xk) 6 P 6 0: Assume that

�P > " > 0: (39)

Adding (38) to (40) we obtain

 k(x
i)�  k(x

k) > "; k > i; (40)

and since

 k(x
i) = '0(x

i)� '0(x
k);  k(x

k) = '0(x
k)� '0(x

k);

then from (41) we have j '0(x
i) � '0(x

k) j> ": Therefore, due to the continuity
of '0(x) there exists � > 0, such that kxi � xkk > �; i > k; i; k 2 K: The latter
contradicts the boundedness of R. E

Now consider again the use of the centres method (19), (21) for solving the
inverse problems of the type (13), (14). If  (x; u) = '(x; u) � '0(u) is a d.c.
function, g(x; u); f(x; u) are convex functions, w(x; u) = 0; Rx; Ry are convex
polytopes, then the Huard’s method has the following form

xk+1 = argminf k(x; u) : (x; u) 2 Rg; R = Rx �Ru;
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 k(x; u) = maxf (x; u) �  (xk; uk); g1(x; u); . . . ; gm1(x; u);

f1(x; u); . . . ; fm2(x; u)g: (41)

If in (42) the maximum is attained at (x; u)� (xk ; uk) then the concave minorant
can be determined by Lemma 1. Otherwise, if the maximum is some function
gj(x; u) (or fi(x; u)), then the concave minorant is determined by the linearization
of this function.

In conclusion we consider following examples.

EXAMPLE 1. In Problem (9) let n = 2;m1 = 2;m = 1; x� = (1; 1);

'(x; u) = x2
1 + 2x2

2 � ux1 � 2ux2; g1(x; u) = x1 + ux2 � 8;

g2(x; u) = ux1 � x2 � 12; Rx = E2
+ = fx : x1 > 0; x2 > 0g; Ru = E1

+:

Then Problem (15) can be rewritten in the form

minf (x�; u) = '(x�; u)� '0(u)g; 0 6 u 6 7;

where '(x�; u) = 3 � 3u. Setting the accuracy " = 10�3 and the initial value
u0 = 0 we obtain the optimal value u� = 2 after 8 iterations of the cutting plane
method.

EXAMPLE 2. In Problem (9) let n = 2;m1 = 2;m = 2; x� = (1; 1);

'(x; u) = u2x
2
1 + u1x

2
2 � u1x1 � 2u1x2; g1(x; u) = u2x1 + u1x2 � 8;

g2(x; u) = u1x1 � u2x2 � 12; Rx = Ru = E2
+:

Starting four times from different initial values of u0 we obtained (in an average
of 10 iterations) four different solutions: (5:35; 2:65); (3; 1:5); (2:69; 1:38); and
(2; 1):
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